A Quasi Curtis-Tits-Phan theorem for the symplectic group

نویسندگان

  • Rieuwert J. Blok
  • Corneliu Hoffman
چکیده

We obtain the symplectic group Sp(V ) as the universal completion of an amalgam of low rank subgroups akin to Levi components. We let Sp(V ) act flag-transitively on the geometry of maximal rank subspaces of V . We show that this geometry and its rank ≥ 3 residues are simply connected with few exceptions. The main exceptional residue is described in some detail. The amalgamation result is then obtained by applying Tits’ lemma. This provides a new way of recognizing the symplectic groups from a small collection of small subgroups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A pr 2 00 6 A Quasi Curtis - Tits - Phan theorem for the symplectic group

We obtain the symplectic group as an amalgam of low rank subgroups akin to Levi components. We do this by having the group act flag-transitively on a new type of geometry and applying Tits’ lemma. This provides a new way of recognizing the symplectic groups from a small collection of small subgroups.

متن کامل

A Curtis-Tits-Phan theorem for the twin-building of type Ãn−1

The Curtis-Tits-Phan theory as laid out originally by Bennett and Shpectorov describes a way to employ Tits’ lemma to obtain presentations of groups related to buildings as the universal completion of an amalgam of low-rank groups. It is formulated in terms of twin-buildings, but all concrete results so far were concerned with spherical buildings only. We describe an explicit flip-flop geometry...

متن کامل

Momentum Maps and Morita Equivalence

We introduce quasi-symplectic groupoids and explain their relation with momentum map theories. This approach enables us to unify into a single framework various momentum map theories, including ordinary Hamiltonian G-spaces, Lu’s momentum maps of Poisson group actions, and the group-valued momentum maps of Alekseev–Malkin–Meinrenken. More precisely, we carry out the following program: (1) We de...

متن کامل

Quasi-hamiltonian Quotients as Disjoint Unions of Symplectic Manifolds

The main result of this paper is Theorem 2.13 which says that the quotient μ({1})/U associated to a quasi-hamiltonian space (M,ω, μ : M → U) has a symplectic structure even when 1 is not a regular value of the momentum map μ. Namely, it is a disjoint union of symplectic manifolds of possibly different dimensions, which generalizes the result of Alekseev, Malkin and Meinrenken in [AMM98]. We ill...

متن کامل

Skew Hadamard difference sets from the Ree-Tits slice symplectic spreads in PG(3, 32h+1)

Using a class of permutation polynomials of F32h+1 obtained from the Ree–Tits slice symplectic spreads in PG(3,32h+1), we construct a family of skew Hadamard difference sets in the additive group of F32h+1 . With the help of a computer, we show that these skew Hadamard difference sets are new when h= 2 and h = 3. We conjecture that they are always new when h > 3. Furthermore, we present a varia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007